
Chapter 16

Graphs

Concepts:
. Graphs
. Adjacency Lists
. Adjacency Matrices
. Graph Algorithms

. . . 314159 . . .
—π (digits 176452–176457)

RELATIONS ARE OFTEN AS USEFUL AS DATA. The process of building and ac-
cessing a data structure can be thought of as a means of effectively focusing
the computation. Linear structures record the history of their accesses, ordered
structures perform incremental sorting, and binary trees encode decisions about
the partitioning of collections of data.

The most general mechanism for encoding relations between data is the
graph. Simple structures, like arrays, provide implicit connections, such as ad-
jacency, between stored values. Graphs are more demanding to construct but,
as a result, they can encode more detailed information. Indeed, the versatility of
graphs allows them to represent many of the most difficult theoretical problems
of computer science.

This chapter investigates two traditional implementations of graphs, as well
as several standard algorithms for analyzing their structure. We first agree on
some basic terminology.

16.1 Terminology
A graph G consists of a collection of vertices v ∈ VG and relations or edges
(u, v) ∈ EG between them (see Figure 16.1). An edge is incident to (or mentions)
each of its two component vertices. A graph is undirected if each of its edges
is considered a set of two unordered vertices, and directed if the mentioned
vertices are ordered (e.g., referred to as the source and destination). A graph S
is a subgraph of G if and only if VS ⊆ VG and ES ⊆ EG. Simple examples of
graphs include the list and the tree.

In an undirected graph, the number of edges (u, v) incident to a vertex u
is its degree. In a directed graph, the outgoing edges determine its out-degree
(or just degree) and incoming edges its in-degree. A source is a vertex with no
incoming edges, while a sink is a vertex with no outgoing edges.

404 Graphs

S

a b

e

f

d

a b

c

b

a

c

b

a d

c e

dc

G

Figure 16.1 Some graphs. Each node a is adjacent to node b, but never to d. Graph
G has two components, one of which is S. The directed tree-shaped graph is a directed,
acyclic graph. Only the top left graph is complete.

Two edges (u, v) and (v, w) are said to be adjacent. A path is a sequence
of n distinct, adjacent edges (v0, v1), (v1, v2), . . . , (vn−1, vn). In a simple path
the vertices are distinct, except for, perhaps, the end points v0 and vn. When
v0 = vn, the simple path is a cycle.

Two vertices u and v are connected (written u ; v) if and only if a simple
path of the graph mentions u and v as its end points. A subgraph S is a connected
component (or, often, just a component) if and only if S is a largest subgraph ofComponents are

always
connected.

G such that for every pair of vertices u, v ∈ VS either u ; v or v ; u. A
connected component of a directed graph G is strongly connected if u ; v and
v ; u for all pairs of vertices u, v ∈ VS .

A graph containing no cycles is acyclic. A directed, acyclic graph (DAG) plays
an important role in solving many problems. A complete graph G contains an
edge (u, v) for all vertices u, v ∈ VG.

16.2 The Graph Interface

Vertices of a graph are usually labeled with application-specific information. As
a result, our implementations of a graph structure depend on the user specifying
unique labels for vertices. In addition, edges may be labeled, but not necessarily
uniquely. It is common, for example, to specify weights or lengths for edges. All
the graph implementations allow addition and removal of vertices and edges:

Graph

16.2 The Graph Interface 405

public interface Graph<V,E> extends Structure<V>

{

public void add(V label);

// pre: label is a non-null label for vertex

// post: a vertex with label is added to graph

// if vertex with label is already in graph, no action

public void addEdge(V vtx1, V vtx2, E label);

// pre: vtx1 and vtx2 are labels of existing vertices

// post: an edge (possibly directed) is inserted between

// vtx1 and vtx2.

public V remove(V label);

// pre: label is non-null vertex label

// post: vertex with "equals" label is removed, if found

public E removeEdge(V vLabel1, V vLabel2);

// pre: vLabel1 and vLabel2 are labels of existing vertices

// post: edge is removed, its label is returned

public V get(V label);

// post: returns actual label of indicated vertex

public Edge<V,E> getEdge(V label1, V label2);

// post: returns actual edge between vertices

public boolean contains(V label);

// post: returns true iff vertex with "equals" label exists

public boolean containsEdge(V vLabel1, V vLabel2);

// post: returns true iff edge with "equals" label exists

public boolean visit(V label);

// post: sets visited flag on vertex, returns previous value

public boolean visitEdge(Edge<V,E> e);

// pre: sets visited flag on edge; returns previous value

public boolean isVisited(V label);

// post: returns visited flag on labeled vertex

public boolean isVisitedEdge(Edge<V,E> e);

// post: returns visited flag on edge between vertices

public void reset();

// post: resets visited flags to false

public int size();

// post: returns the number of vertices in graph

406 Graphs

public int degree(V label);

// pre: label labels an existing vertex

// post: returns the number of vertices adjacent to vertex

public int edgeCount();

// post: returns the number of edges in graph

public Iterator<V> iterator();

// post: returns iterator across all vertices of graph

public Iterator<V> neighbors(V label);

// pre: label is label of vertex in graph

// post: returns iterator over vertices adj. to vertex

// each edge beginning at label visited exactly once

public Iterator<Edge<V,E>> edges();

// post: returns iterator across edges of graph

// iterator returns edges; each edge visited once

public void clear();

// post: removes all vertices from graph

public boolean isEmpty();

// post: returns true if graph contains no vertices

public boolean isDirected();

// post: returns true if edges of graph are directed

}

Because edges can be fully identified by their constituent vertices, edge opera-
tions sometimes require pairs of vertex labels. Since it is useful to implement
both directed and undirected graphs, we can determine the type of a specific
graph using the isDirected method. In undirected graphs, the addition of
an edge effectively adds a directed edge in both directions. Many algorithms
keep track of their progress by visiting vertices and edges. This is so com-
mon that it seems useful to provide direct support for adding (visit), checking
(isVisited), and removing (reset) marks on vertices and edges.

Two iterators—generated by iterator and edges—traverse the vertices and
edges of a graph, respectively. A special iterator—generated by neighbors—
traverses the vertices adjacent to a given vertex. From this information, out-
bound edges can be determined.

Before we discuss particular implementations of graphs, we consider the
abstraction of vertices and edges. From the user’s point of view a vertex is a
label. Abstractly, an edge is an association of two vertices and an edge label. In
addition, we must keep track of objects that have been visited. These features
of vertices and edges are independent of the implementation of graphs; thus we
commit to an interface for these objects early. Let’s consider the Vertex class.

16.2 The Graph Interface 407

class Vertex<E>

{

public Vertex(E label)

// post: constructs unvisited vertex with label

public E label()

// post: returns user label associated w/vertex

public boolean visit()

// post: returns, then marks vertex as being visited

public boolean isVisited()

// post: returns true iff vertex has been visited

public void reset()

// post: marks vertex unvisited

public boolean equals(Object o)

// post: returns true iff vertex labels are equal

}

This class is similar to an Association: the label portion of the Vertex cannot

Vertex

be modified, but the visited flag can be freely set and reset. Two Vertex objects
are considered equal if their labels are equal. It is a bare-bones interface. It
should also be noted that the Vertex is a nonpublic class. Since a Vertex is
not visible through the Graph interface, there is no reason for the user to have
access to the Vertex class.

Because the Edge class is visible “through” the Graph interface (you might
ask why—see Problem 16.8), the Edge class is declared public:

Edge

public class Edge<V,E>

{

public Edge(V vtx1, V vtx2, E label,

boolean directed)

// post: edge associates vtx1 and vtx2; labeled with label

// directed if "directed" set true

public V here()

// post: returns first node in edge

public V there()

// post: returns second node in edge

public void setLabel(E label)

// post: sets label of this edge to label

public E label()

// post: returns label associated with this edge

public boolean visit()

408 Graphs

// post: visits edge, returns whether previously visited

public boolean isVisited()

// post: returns true iff edge has been visited

public boolean isDirected()

// post: returns true iff edge is directed

public void reset()

// post: resets edge's visited flag to initial state

public boolean equals(Object o)

// post: returns true iff edges connect same vertices

}

As with the Vertex class, the Edge can be constructed, visited, and reset. Unlike
its Vertex counterparts, an Edge’s label may be changed. The methods here

and there provide access to labels of the vertices mentioned by the edge. These
method names are sufficiently ambiguous to be easily used with undirected
edges and convey a slight impression of direction for directed edges. Naming
of these methods is important because they are used by those who wish to get
vertex information while traversing a (potentially directed) graph.

16.3 Implementations

Now that we have a good feeling for the graph interface, we consider traditionalAs “traditional”
as this science
gets, anyway!

implementations. Nearly every implementation of a graph has characteristics
of one of these two approaches. Our approach to specifying these implemen-
tations, however, will be dramatically impacted by the availability of object-
oriented features. We first discuss the concept of a partially specified abstract
class in Java.

16.3.1 Abstract Classes Reemphasized

Normally, when a class is declared, code for each of the methods must be pro-
vided. Then, when an instance of the class is constructed, each of the methods
can be applied to the resulting object. As is common with our design approach,
however, it is useful to partially implement a class and later finish the imple-
mentation by extending the class in a particular direction. The partial base class
is abstract; it cannot be constructed because some of the methods are not com-
pletely defined. The extension to the class inherits the methods that have been
defined and specifies any incomplete code to make the class concrete.

Again, we use abstract classes in our design of various graph implemen-
tations. Each implementation will be declared abstract, with the abstract

keyword:

GraphMatrix

16.3 Implementations 409

abstract public class GraphMatrix<V,E>

extends AbstractStructure<V> implements Graph<V,E>

Our approach will be to provide all the code that can be written without con-
sidering whether the graph is undirected or directed. When we must write code
that is dependent on the “directedness” of the graph, we delay it by writing
just an abstract header for the particular method. For example, we will need
to add edges to our graph, but the implementation depends on whether or not
the graph is directed. Looking ahead, here is what the declaration for addEdge
looks like in the abstract class GraphMatrix:

abstract public void addEdge(V v1, V v2, E label);

// pre: vtx1 and vtx2 are labels of existing vertices

// post: an edge (possibly directed) is inserted between

// vtx1 and vtx2.

That’s it! It is simply a promise that code will eventually be written.
Once the abstract class is described as fully as possible, we extend it, commit-

ting the graph to being undirected or directed. The directed version of the Graph
implementation, called GraphMatrixDirected, specifies the addEdge method as

GraphMatrix-

Directed

follows:

public class GraphMatrixDirected<V,E> extends GraphMatrix<V,E>

{

public void addEdge(V vLabel1, V vLabel2, E label)

// pre: vLabel1 and vLabel2 are labels of existing vertices

// post: an edge is inserted between vLabel1 and vLabel2;

// if edge is new, it is labeled with label (can be null)

{

GraphMatrixVertex<V> vtx1,vtx2;

}

}

Because we declare the class GraphMatrixDirected to be an extension of the
GraphMatrix class, all the code written for the GraphMatrix class is inherited;
it is as though it had been written for the GraphMatrixDirected class. By
providing the missing pieces of code (tailored for directed graphs), the ex-
tension class becomes concrete. We can actually construct instances of the
GraphMatrixDirected class.

A related concept, subtyping, allows us to use any extension of a class wher-
ever the extended class could be used. We call the class that was extended
the base type or superclass, and the extension the subtype or subclass. Use of
subtyping allows us to write code like

GraphMatrix<String,String> g = new GraphMatrixDirected<String,String>();

g.add("Alice");

g.add("Bob");

g.addEdge("Alice","Bob","helps"); // "Alice helps Bob!"

410 Graphs

(a) (b)

F TF F T

F F F F F

F F

FF F

F F

T T

TTT

T TT

0

1

2

3

4

0 1 2 3 43

1

2 4

0

Figure 16.2 (a) An undirected graph and (b) its adjacency matrix representation. Each
nontrivial edge is represented twice across the diagonal—once in the gray and once in
the white—making the matrix symmetric.

Because GraphMatrixDirected is an extension of GraphMatrix, it is a Graph-

Matrix. Even though we cannot construct a GraphMatrix, we can correctly
manipulate concrete subtypes using the methods described in the abstract class.
In particular, a call to the method addEdge calls the method of GraphMatrixDi-
rected.

We now return to our normally scheduled implementations!

16.3.2 Adjacency Matrices

An n× n matrix of booleans is sufficient to represent an arbitrary graph of rela-
tions among n vertices. We simply store true in the boolean at matrix location
[u][v] to represent the fact that there is an edge between u and v (see Fig-
ure 16.2), and false otherwise. Since entries [u][v] and [v][u] are independent,
the representation is sufficient to describe directed graphs as well. Our conven-Beware: Edges

on the diagonal
appear exactly

once.

tion is that the first index (the row) specifies the source and the second index
(the column) indicates the destination. To represent undirected graphs, we sim-
ply duplicate the entry [u][v] at entry [v][u]. This is called an adjacency matrix
representation of a graph. The abstract graphs of Figures 16.2a and 16.3a are
represented, respectively, by the matrices of Figures 16.2b and 16.3b.

One difficult feature of our implementation is the arbitrary labeling of ver-
tices and edges. To facilitate this, we maintain a Dictionary that translates a
vertex label to a Vertex object. To help each vertex keep track of its associated
index we extend the Vertex class to include methods that manipulate an index

field. Each index is a small integer that identifies the dedicated row and column
that maintain adjacency information about each vertex. To help allocate the
indices, we keep a free list (see Section 9.2) of available indices.

One feature of our implementation has the potential to catch the unwary
programmer by surprise. Because we keep a Map of vertex labels, it is important
that the vertex label class implement the hashCode function in such a way as to

16.3 Implementations 411

(a) (b)

0

3

2 1

4 F

F F F F

F

FF F

F FT

0

1

2

3

4

0 1 2 3 4

T T F

T

F TF F

F

F F

T

Destination

So
ur

ce

T

Figure 16.3 (a) A directed graph and (b) its adjacency matrix representation. Each
edge appears exactly once in the matrix.

guarantee that if two labels are equal (using the equals method), they have the
same hashCode.

We can now consider the protected data and constructors for the GraphMat-

rix class:

GraphMatrix

protected int size; // allocation size for graph

protected Object data[][]; // matrix - array of arrays

protected Map<V,GraphMatrixVertex<V>> dict; // labels -> vertices

protected List<Integer> freeList; // available indices in matrix

protected boolean directed; // graph is directed

protected GraphMatrix(int size, boolean dir)

{

this.size = size; // set maximum size

directed = dir; // fix direction of edges

// the following constructs a size x size matrix

data = new Object[size][size];

// label to index translation table

dict = new Hashtable<V,GraphMatrixVertex<V>>(size);

// put all indices in the free list

freeList = new SinglyLinkedList<Integer>();

for (int row = size-1; row >= 0; row--)

freeList.add(new Integer(row));

}

To construct the graph, the user specifies an upper bound on the number of
vertices. We allocate size arrays of length size—a two-dimensional array. By
default, the array elements are null, so initially there are no edges. We then
put each of the indices into the list of available vertex indices.

This constructor is declared protected. It takes a second parameter, di-

rected, that identifies whether or not the graph constructed is to act like a

412 Graphs

directed graph. When we extend the graph to implement either directed or
undirected graphs, we write a public constructor to call the abstract protected
class’s constructor with an appropriate boolean value:

GraphMatrix-

Directed

public GraphMatrixDirected(int size)

// pre: size > 0

// post: constructs an empty graph that may be expanded to

// at most size vertices. Graph is directed if dir true

// and undirected otherwise

{

super(size,true);

}

As we discussed before, this technique allows the implementor to selectively
inherit the code that is common between directed and undirected graphs. Since
we hide the implementation, we are free to reimplement either type of graph
without telling our users, perhaps allowing us to optimize our code.

Returning to the GraphMatrix class, the add method adds a labeled vertex.
If the vertex already exists, the operation does nothing. If it is new to the graph,
an index is allocated from the free list, a new Vertex object is constructed, and
the label-vertex association is recorded in the Map. The newly added vertex
mentions no edges, initially.

GraphMatrix

public void add(V label)

// pre: label is a non-null label for vertex

// post: a vertex with label is added to graph;

// if vertex with label is already in graph, no action

{

// if there already, do nothing

if (dict.containsKey(label)) return;

Assert.pre(!freeList.isEmpty(), "Matrix not full");

// allocate a free row and column

int row = freeList.removeFirst().intValue();

// add vertex to dictionary

dict.put(label, new GraphMatrixVertex<V>(label, row));

}

Removing a vertex reverses the add process. We must, however, be sure to
set each element of the vertex’s matrix row and column to null, removing any
mentioned edges (we may wish to add a new, isolated vertex with this index in
the future). When we remove the vertex from the Map, we “recycle” its index
by adding it to the list of free indices. As with all of our remove methods, we
return the previous value of the label. (Even though the labels match using
equals, they may not be precisely the same; once returned the user can extract
any unknown information from the previous label before the value is collected
as garbage.)

public V remove(V label)

16.3 Implementations 413

// pre: label is non-null vertex label

// post: vertex with "equals" label is removed, if found

{

// find and extract vertex

GraphMatrixVertex<V> vert;

vert = dict.remove(label);

if (vert == null) return null;

// remove vertex from matrix

int index = vert.index();

// clear row and column entries

for (int row=0; row<size; row++) {

data[row][index] = null;

data[index][row] = null;

}

// add node index to free list

freeList.add(new Integer(index));

return vert.label();

}

Within the graph we store references to Edge objects. Each Edge records all
of the information necessary to position it within the graph, including whether it
is directed or not. This allows the equals method to work on undirected edges,
even if the vertices were provided in the opposite order (see Problem 16.12).
To add an edge to the graph, we require two vertex labels and an edge label.
The vertex labels uniquely identify the vertices within the graph, and the edge
label is used to form the value inserted within the matrix at the appropriate row
and column. To add the edge, we construct a new Edge with the appropriate
information. This object is written to appropriate matrix entries: undirected
graphs update one or two locations; directed graphs update just one. Here is
the addEdge method for undirected graphs:

GraphMatrix-

Undirected

public void addEdge(V vLabel1, V vLabel2, E label)

// pre: vLabel1 and vLabel2 are labels of existing vertices, v1 & v2

// post: an edge (undirected) is inserted between v1 and v2;

// if edge is new, it is labeled with label (can be null)

{

GraphMatrixVertex<V> vtx1,vtx2;

// get vertices

vtx1 = dict.get(vLabel1);

vtx2 = dict.get(vLabel2);

// update matrix with new edge

Edge<V,E> e = new Edge<V,E>(vtx1.label(),vtx2.label(),label,false);

data[vtx1.index()][vtx2.index()] = e;

data[vtx2.index()][vtx1.index()] = e;

}

Here is a similar method for directed graphs:

GraphMatrix-

Directed

public void addEdge(V vLabel1, V vLabel2, E label)

414 Graphs

// pre: vLabel1 and vLabel2 are labels of existing vertices

// post: an edge is inserted between vLabel1 and vLabel2;

// if edge is new, it is labeled with label (can be null)

{

GraphMatrixVertex<V> vtx1,vtx2;

// get vertices

vtx1 = dict.get(vLabel1);

vtx2 = dict.get(vLabel2);

// update matrix with new edge

Edge<V,E> e = new Edge<V,E>(vtx1.label(),vtx2.label(),label,true);

data[vtx1.index()][vtx2.index()] = e;

}

The differences are quite minor, but the two different subtypes allow us to write
specialized code without performing explicit run-time tests.1

The removeEdge method removes and returns the label associated with the
Edge found between two vertices. Here is the undirected version (the directed
version is similar):

GraphMatrix-

Undirected

public E removeEdge(V vLabel1, V vLabel2)

// pre: vLabel1 and vLabel2 are labels of existing vertices

// post: edge is removed, its label is returned

{

// get indices

int row = dict.get(vLabel1).index();

int col = dict.get(vLabel2).index();

// cache old value

Edge<V,E> e = (Edge<V,E>)data[row][col];

// update matrix

data[row][col] = null;

data[col][row] = null;

if (e == null) return null;

else return e.label();

}

The get, getEdge, contains, and containsEdge methods return informa-
tion about the graph in an obvious way. Modifying the objects returned by these
methods can be dangerous: they have the potential of invalidating the state of
the underlying graph implementation.

Each of the visit-type methods passes on requests to the underlying ob-
ject. For example, the visit method simply refers the request to the associated
Vertex:

GraphMatrix

public boolean visit(V label)

// post: sets visited flag on vertex, returns previous value

1 This is somewhat misleading, as the obvious run-time tests are replaced by less obvious decreases
in performance due to subtyping. Still, the logical complexity of the code can be dramatically
reduced using these techniques.

16.3 Implementations 415

{

Vertex<V> vert = dict.get(label);

return vert.visit();

}

The process of resetting the visitation marks on a graph traverses each of the
vertices and edges, resetting them along the way.

We now consider the implementation of each of the three iterators. The But I reiterate
myself.first, generated by iterator, traverses the vertices. The values returned by the

Iterator are vertex labels. This Iterator is easily constructed by returning
the value of the Map’s keys function!

public Iterator<V> iterator()

// post: returns traversal across all vertices of graph

{

return dict.keySet().iterator();

}

The neighbors iterator, which traverses the edges adjacent to a single ver-
tex, considers only the outgoing edges. We simply look up the index associated
with the vertex label and scan across the row, building up a list of vertex labels
that are adjacent using each of the edges. By putting these values in a list, we
can return a ListIterator that will give us iterative access to each of the adja-
cent vertex labels. With this information we may retrieve the respective edges
with getEdge if necessary.

public Iterator<V> neighbors(V label)

// pre: label is label of vertex in graph

// post: returns traversal over vertices adj. to vertex

// each edge beginning at label visited exactly once

{

GraphMatrixVertex<V> vert;

vert = dict.get(label);

List<V> list = new SinglyLinkedList<V>();

for (int row=size-1; row>=0; row--)

{

Edge<V,E> e = (Edge<V,E>)data[vert.index()][row];

if (e != null) {

if (e.here().equals(vert.label()))

list.add(e.there());

else list.add(e.here());

}

}

return list.iterator();

}

All that remains is to construct an iterator over the edges of the graph. Again,
we construct a list of the edges and return the result of the iterator method
invoked on the list. For directed edges, we include every edge; for undirected

416 Graphs

edges we include only the edges found in, say, the lower half of the array (in-
cluding the diagonal). Here is the version for the undirected graph:

GraphMatrix-

Undirected

public Iterator<Edge<V,E>> edges()

// post: returns traversal across all edges of graph (returns Edges)

{

List<Edge<V,E>> list = new SinglyLinkedList<Edge<V,E>>();

for (int row=size-1; row>=0; row--)

for (int col=size-1; col >= row; col--) {

Edge<V,E> e = (Edge<V,E>)data[row][col];

if (e != null) list.add(e);

}

return list.iterator();

}

The great advantage of the adjacency matrix representation is its simplicity.
The access to a particular edge in a graph of size n can be accomplished in con-
stant time. Other operations, like remove, appear to be more complex, taking
O(n) time. The disadvantage is that the implementation may vastly overesti-
mate the storage required for edges. While we have room for storing O(n2)
directed edges, some graphs may only need to make use of O(n) edges. Graphs
with superlinear numbers of edges are called dense; all other graphs are sparse.
When graphs are sparse, most of the elements of the adjacency matrix are not
used, leading to a significant waste of space. Our next implementation is par-
ticularly suited for representing sparse graphs.

16.3.3 Adjacency Lists

Recalling the many positive features of a linked list over a fixed-size array, we
now consider the use of an adjacency list. As with the adjacency matrix repre-
sentation, we maintain a Map for identifying the relationship between a vertex
label and the associated Vertex object. Within the vertex, however, we store a
collection (usually a linked list) of edges that mention this vertex. Figures 16.4
and 16.5 demonstrate the adjacency list representations of undirected and di-
rected graphs. The great advantage of using a collection is that it stores only
edges that appear as part of the graph.

As with the adjacency matrix implementation, we construct a privately used
extension to the Vertex class. In this extension we reference a collection of
edges that are incident to this vertex. In directed graphs, we collect edges that
mention the associated vertex as the source. In undirected graphs any edge inci-
dent to the vertex is collected. Because the edges are stored within the vertices,
most of the actual implementation of graphs appears within the implementation
of the extended vertex class. We see most of the implementation here:

GraphListVertex

class GraphListVertex<V,E> extends Vertex<V>

{

protected Structure<Edge<V,E>> adjacencies; // adjacent edges

public GraphListVertex(V key)

16.3 Implementations 417

// post: constructs a new vertex, not incident to any edge

{

super(key); // init Vertex fields

adjacencies = new SinglyLinkedList<Edge<V,E>>(); // new list

}

public void addEdge(Edge<V,E> e)

// pre: e is an edge that mentions this vertex

// post: adds edge to this vertex's adjacency list

{

if (!containsEdge(e)) adjacencies.add(e);

}

public boolean containsEdge(Edge<V,E> e)

// post: returns true if e appears on adjacency list

{

return adjacencies.contains(e);

}

public Edge<V,E> removeEdge(Edge<V,E> e)

// post: removes and returns adjacent edge "equal" to e

{

return adjacencies.remove(e);

}

public Edge<V,E> getEdge(Edge<V,E> e)

// post: returns the edge that "equals" e, or null

{

Iterator<Edge<V,E>> edges = adjacencies.iterator();

while (edges.hasNext())

{

Edge<V,E> adjE = edges.next();

if (e.equals(adjE)) return adjE;

}

return null;

}

public int degree()

// post: returns the degree of this node

{

return adjacencies.size();

}

public Iterator<V> adjacentVertices()

// post: returns iterator over adj. vertices

{

return new GraphListAIterator<V,E>(adjacentEdges(), label());

}

public Iterator<Edge<V,E>> adjacentEdges()

418 Graphs

(a) (b)

3

01

2 4

0

1

2

3

4

4

3 4

2 4

23 0

2

0

Figure 16.4 (a) An undirected graph and (b) its adjacency list representation. Each
edge is represented twice in the structure. (Compare with Figure 16.2.)

(a) (b)

0

3

2 1

4 0

2

3

0

14

3

0

1

2

3

4

So
ur

ce

Figure 16.5 (a) A directed graph and (b) its adjacency list representation. Each edge
appears once in the source list. (Compare with Figure 16.3.)

// post: returns iterator over adj. edges

{

return adjacencies.iterator();

}

}

The constructor initializes its Vertex fields, and then constructs an empty adja-
cency list. Elements of this list will be Edge objects. Most of the other methods
have obvious behavior.

The only difficult method is getEdge. This method returns an edge from
the adjacency list that logically equals (i.e., is determined to be equal through
a call to Edge’s equals method) the edge provided. In an undirected graph the
order of the vertex labels may not correspond to the order found in edges in the
edge list. As a result, getEdge returns a canonical edge that represents the edge
specified as the parameter. This ensures that there are not multiple instances of
edges that keep track of shared information.

We are now ready to implement most of the methods required by the Graph

16.3 Implementations 419

interface. First, we consider the protected GraphList constructor:

protected Map<V,GraphListVertex<V,E>> dict; // label -> vertex

protected boolean directed; // is graph directed?

protected GraphList(boolean dir)

{

dict = new Hashtable<V,GraphListVertex<V,E>>();

directed = dir;

}

Our approach to extending the abstract GraphList type to support directed and
undirected graphs is similar to that described in the adjacency matrix imple-
mentation. With the list-based implementation, though, we need not provide
an upper bound on the number of vertices that will appear in the graph. This is
because the underlying structures automatically extend themselves, if necessary.

The process of adding and removing a vertex involves simple manipulations
of the Map. Here, for example, is the code for adding a new vertex to the graph:

public void add(V label)

// pre: label is a non-null label for vertex

// post: a vertex with label is added to graph;

// if vertex with label is already in graph, no action

{

if (dict.containsKey(label)) return; // vertex exists

GraphListVertex<V,E> v = new GraphListVertex<V,E>(label);

dict.put(label,v);

}

To add an edge to the graph we insert a reference to the Edge object in
the appropriate adjacency lists. For a directed graph, we insert the edge in
the list associated with the source vertex. For an undirected graph, a reference
to the edge must be inserted into both lists. It is important, of course, that a
reference to a single edge be inserted in both lists so that changes to the edge
are maintained consistently. Here, we show the undirected version:

GraphList-

Undirected

public void addEdge(V vLabel1, V vLabel2, E label)

// pre: vLabel1 and vLabel2 are labels of existing vertices, v1 & v2

// post: an edge (undirected) is inserted between v1 and v2;

// if edge is new, it is labeled with label (can be null)

{

GraphListVertex<V,E> v1 = dict.get(vLabel1);

GraphListVertex<V,E> v2 = dict.get(vLabel2);

Edge<V,E> e = new Edge<V,E>(v1.label(), v2.label(), label, false);

v1.addEdge(e);

v2.addEdge(e);

}

Removing an edge simply reverses this process:

420 Graphs

public E removeEdge(V vLabel1, V vLabel2)

// pre: vLabel1 and vLabel2 are labels of existing vertices

// post: edge is removed, its label is returned

{

GraphListVertex<V,E> v1 = dict.get(vLabel1);

GraphListVertex<V,E> v2 = dict.get(vLabel2);

Edge<V,E> e = new Edge<V,E>(v1.label(), v2.label(), null, false);

v2.removeEdge(e);

e = v1.removeEdge(e);

if (e == null) return null;

else return e.label();

}

Notice that to remove an edge a “pattern” edge must be constructed to identifySteve doesn’t
like this
I agree.

(through equals) the target of the remove.
Now that we can remove edges, we can remove a vertex. Since the removal

of a vertex should remove incident edges, it is important that each of the ad-
jacency lists be checked. Our approach is to iterate across each of the vertices
and remove any edge that mentions that vertex. This requires some care. Here
is the directed version:

GraphList-

Directed

public V remove(V label)

// pre: label is non-null vertex label

// post: vertex with "equals" label is removed, if found

{

GraphListVertex<V,E> v = dict.get(label);

Iterator<V> vi = iterator();

while (vi.hasNext())

{

V v2 = vi.next();

if (!label.equals(v2)) removeEdge(v2,label);

}

dict.remove(label);

return v.label();

}

The complexity of this method counterbalances the simplicity of adding a vertex
to the graph.

Many of the remaining edge and vertex methods have been greatly simpli-
fied by our having extended the Vertex class. Here, for example, is the degree

method:

public int degree(V label)

// pre: label labels an existing vertex

// post: returns the number of vertices adjacent to vertex

{

Assert.condition(dict.containsKey(label), "Vertex exists.");

return dict.get(label).degree();

}

16.3 Implementations 421

This code calls the GraphListVertex degree method. That, in turn, calls the
size method of the underlying collection, a SinglyLinkedList. Most of the
remaining methods are simply implemented.

At this point, it is useful to discuss the implementation of iterators for the
adjacency list representation. Like the adjacency matrix implementation, the
iterator method simply returns the result of the keys iterator on the underly-
ing Map. Each of the values returned by the iterator is a vertex label, which is
exactly what we desire.

The neighbors iterator should return an iterator over the neighbors of the
provided vertex. Since each vertex maintains a Collection of edges, the iterator
method of the collection returns Edge values. Our approach is similar to the ap-
proach we used in constructing the iterators for Maps: we construct a private,
special-purpose iterator that drives the Collection iterator as a slave. The pro-
cess of extracting the “other” vertex from each edge encountered is made com-
plex by the fact that “this” vertex can appear as either the source or destination
vertex when the graph is undirected.

The Edge’s iterator has similar complexities. The easiest approach is to con-
struct a list of edges by traversing each of the edge lists found in each of the
vertices. The result is an iterator over the resulting list. Here is the code for the
constructor of our private GraphListEIterator class:

protected AbstractIterator<Edge<V,E>> edges;

public GraphListEIterator(Map<V,GraphListVertex<V,E>> dict)

// post: constructs a new iterator across edges of

// vertices within dictionary

{

List<Edge<V,E>> l = new DoublyLinkedList<Edge<V,E>>();

Iterator<GraphListVertex<V,E>> dictIterator = dict.values().iterator();

while (dictIterator.hasNext())

{

GraphListVertex<V,E> vtx =

(GraphListVertex<V,E>)dictIterator.next();

Iterator<Edge<V,E>> vtxIterator = vtx.adjacentEdges();

while (vtxIterator.hasNext())

{

Edge<V,E> e = vtxIterator.next();

if (vtx.label().equals(e.here())) l.addLast(e);

}

}

edges = (AbstractIterator<Edge<V,E>>)l.iterator();

}

Each of the edges is traversed in the construction of the iterator, so there is
considerable overhead just during initialization. Once constructed, however, the
traversal is quick. An alternative implementation would distribute the cost over
each step of the traversal. Construction of the iterator would be less expensive,
but each step of the traversal would be slightly slower. In the end, both methods

422 Graphs

consume similar amounts of time. If, however, partial traversals of the edge lists
are expected, the alternative implementation has its merits.

With two implementations of graphs in mind, we now focus on a number of
examples of their use.

16.4 Examples: Common Graph Algorithms

Because the graph structure is so flexible there are many good examples of
graph applications. In this section, we investigate a number of beautiful algo-
rithms involving graphs. These algorithms provide a cursory overview of the
problems that may be cast as graph problems, as well as techniques that are
commonly used to solve them.

16.4.1 Reachability

Once data are stored within a graph, it is often desirable to identify vertices
that are reachable from a common source (see Figure 16.6). One approach is
to treat the graph as you would a maze and, using search techniques, find the
reachable vertices. For example, we may use depth-first search: each time we
visit an unvisited vertex we seek to further deepen the traversal.

The following code demonstrates how we might use recursion to search for
unvisited vertices:

Reachability

static void reachableFrom(Graph<V,E> g, V vertexLabel)

// pre: g is a non-null graph, vertexLabel labels a vertex of g

// post: unvisited vertices reachable from vertex are visited

{

g.visit(vertexLabel); // visit this vertex

// recursively visit unvisited neighbor vertices

Iterator<V> ni = g.neighbors(vertexLabel);

while (ni.hasNext())

{

V neighbor = ni.next(); // adjacent node label

if (!g.isVisited(neighbor))

{

reachableFrom(g,neighbor); // depth-first search

}

}

}

We clear each Vertex’s visited flag with a call to reset, and then call reach-
ableFrom with the graph and the source vertex for the reachability test. Before
the call to reachableFrom, the vertex labeled with the vertexLabel has not
been visited. After the call, every vertex reachable from the vertex has been
visited. Some vertices may be left unvisited and are not reachable from the

16.4 Examples: Common Graph Algorithms 423

(a)

Theory

Compiler design

Data structures

Operating systems

Linear algebra

Parallel systems

Discrete math

(b)

Graphics Networks

A.I.

Surfing

Modeling

Vision

Languages

Java

Organization

TheoryAlgorithms

Organization

JavaGraphics

Languages

Algorithms

Networks

A.I.

Surfing

Modeling

Vision

Linear algebra

Discrete math

Parallel systems

Operating systems

Compiler design

Data structures

Figure 16.6 Courses you might be expected to have taken if you’re in a compiler de-
sign class. (a) A typical prerequisite graph (classes point to prerequisites). Note the
central nature of data structures! (b) Bold courses can be reached as requisite courses
for compiler design.

424 Graphs

source. So, to determine whether you may reach one vertex from another, the
following code can be used:

g.reset();

reachableFrom(g,sourceLabel);

canGetThere = g.isVisited(destinationLabel);

In Section 10.3 we discussed the use of a Linear structure to maintain the state
of a search of a maze. The use of a Stack led to a depth-first search. Here,
however, no Stack appears! The reason is that the act of calling the procedure
recursively maintains an implied stack of local variables.

How long does it take to execute the procedure? Suppose that, ultimately,
we visit the reachable vertices Vr. Let Er be the edges of the graph found among
the vertices of Vr. Clearly, each vertex of Vr is visited, so there is one call to
reachableFrom from each vertex v ∈ Vr. For each call, we ask each destination
vertex if it has been visited or not. There is one such test for every edge within
Er. Thus, the total time is O(|Vr| + |Er|). Since |Er| ≥ |Vr − 1| (every new
vertex is visited by traversing a new edge), the algorithm is dominated by the
number of edges actually investigated. Of course, if the graph is dense, this is
bounded above by the square of the number of vertices.

In an undirected graph the reachable vertices form a component of the
graph. To count the components of a graph (the undirected version of the
graph of Figure 16.6 has three components), we iterate across the vertices of
the graph, calling the reachableFrom procedure on any vertex that has not yet
been visited. Since each unvisited vertex is not reachable from those that have
been encountered before, the number of searches determines the number of
components.

16.4.2 Topological Sorting

Occasionally it is useful to list the vertices of a graph in such a way as to make
the edges point in one direction, for example, toward the front of the list. Such
graphs have to be directed and acyclic (see Problem 16.13). A listing of vertices
with this property is called a topological sort.

One technique for developing a topological sort involves keeping track of a
counter or virtual timer. The timer is incremented every time it is read. We now
visit each of the nodes using a depth-first search, labeling each node with two
time stamps. These time stamps determine the span of time that the algorithm
spends processing the descendants of a node. When a node is first encountered
during the search, we record the start time. When the recursive depth-first
search returns from processing a node, the timer is again read and the finish
time is recorded. Figure 16.7 depicts the intervals associated with each vertex
of the graph of Figure 16.6. (As arbitrary convention, we assume that a vertex
iterator would encounter nodes in the diagram in “reading” order.)

One need only observe that the finish time of a node is greater than the
finish time of any node it can reach. (This depth-first search may have to be

16.4 Examples: Common Graph Algorithms 425

Parallel systems: 33−34

Operating systems: 17−18

Data structures: 3−6

Linear algebra: 26−27

Discrete math: 10−11

A.I.: 21−22
Modeling: 23−24

Vision: 19−20

Organization: 14−15

Java: 4−5

Algorithms: 9−12
Surfing: 31−32

Networks: 29−30

Theory: 8−13

Graphics: 25−28

Languages: 2−7

Compiler design: 1−16

Figure 16.7 The progress of a topological sort of the course graph. The time inter-
val following a node label indicates the time interval spent processing that node or its
descendants. Dark nodes reachable from compiler design are all processed during the
interval [1–16]—the interval associated with compiler design.

426 Graphs

started at several nodes if there are several independent components, or if the
graph is not strongly connected.) The algorithm, then, simply lists the vertices
in the order in which they are finished. For our course graph we generate one
of many course schedules that allow students to take courses without violating
course requirements:

Vertices Ordered by Finish Time
5. Java 15. Organization 27. Linear algebra
6. Data structures 16. Compiler design 28. Graphics
7. Languages 18. Operating systems 30. Networks

11. Discrete math 20. Vision 32. Surfing
12. Algorithms 22. A.I. 34. Parallel systems
13. Theory 24. Modeling

Actually, the time stamps are useful only for purposes of illustration. In fact,
we can simply append vertices to the end of a list at the time that they would
normally be finished. Here is a sample code:

TopoSort

public static List<V> topoSort(Graph<V,E> g)

// pre: g is non-null

// post: returns list of all vertices of g, topologically ordered

{

// construct result list

List<V> l = new DoublyLinkedList<V>();

Iterator<V> vi = g.elements();

while (vi.hasNext())

{

V v = vi.next();

// perform depth-first search on unvisited vertices

if (!g.isVisited(v))

{

DFS(g,v,l);

}

}

// result is queue of vertex labels

return l;

}

static protected void DFS(Graph<V,E> g, V n, List<V> l)

// post: performs depth-first search enqueuing

// unvisited descendants of node n into l

{

g.visit(n); // mark node visited

Iterator<V> ei = g.neighbors(n); // get neighbors

while (ei.hasNext())

{

V neighbor = ei.next();

// potentially deepen search if neighbor not visited

if (!g.isVisited(neighbor)) {

16.4 Examples: Common Graph Algorithms 427

DFS(g,neighbor,l);

}

}

l.addLast(n); // add this value once decendants added

}

These functions are declared as static procedures of a program that might
make use of a topological sort. Alternatively, they could be written as methods
of a graph, reducing the complexity of method calls.

16.4.3 Transitive Closure

Previously we discussed a reachability algorithm that determines if it is possi-
ble to reach any particular vertex from a particular source. It is also useful to
compute the transitive closure of a graph: for each pair of vertices u, v ∈ V , is
v reachable from u? These questions can be answered by O(|V |) calls to the
depth-first search algorithm (leading to an algorithm that is O(|V |(|V |+ |E|))),
or we can look for a more direct algorithm that has similar behavior.

One algorithm, Warshall’s algorithm, computes reachability for each pair of
vertices by modifying the graph. When the algorithm is applied to a graph,
edges are added until there is an edge for every pair of connected vertices (u, v).
The concept behind Warshall’s algorithm is relatively simple. Two connected
vertices u and v are either directly connected, or the path from u to v passes
through an intermediate node w. The algorithm simply considers each node
and connects all pairs of nodes u and v that can be shown to use w as an
intermediate node. Here is a Java implementation:

Warshall

static void warshall(Graph<V,E> g)

// pre: g is non-null

// post: g contains edge (a,b) if there is a path from a to b

{

Iterator<V> witer = g.iterator();

while (witer.hasNext())

{

Iterator<V> uiter = g.iterator();

V w = witer.next();

while (uiter.hasNext())

{

Iterator<V> viter = g.iterator();

V u = uiter.next();

while (viter.hasNext())

{

V v = viter.next();

// check for edge from u to v via w

if (g.containsEdge(u, w) &&

g.containsEdge(w, v))

{

428 Graphs

g.addEdge(u, v, null);

}

}

}

}

}

This algorithm is clearly O(|V |3): each iterator visits |V | vertices and (for adja-
cency matrices) the check for existence of an edge can be performed in constant
time.

To see how the algorithm works, we number the vertices in the order they
are encountered by the vertex iterator. After k iterations of the outer loop,
all “reachability edges” of the subgraph containing just the first k vertices are
completely determined. The next iteration extends this result to a subgraph of
k + 1 vertices. An inductive approach to proving this algorithm correct (which
we avoid) certainly has merit.

16.4.4 All Pairs Minimum Distance

A slight modification of Warshall’s algorithm gives us a method for computing
the minimum distance between all pairs of points. The method is due to Floyd.
Again, we use three loops to compute the new edges representing reachability,
but these edges are now labeled, or weighted, with integer distances that indi-
cate the current minimum distance between each pair of nodes. As we consider
intermediate nodes, we merge minimum distance approximations by computing
and updating the distance if the sum of path lengths through an intermediate
node w is less than our previous approximation. Object orientation makes this
code somewhat cumbersome:

Floyd

static void floyd(Graph<V,E> g)

// post: g contains edge (a,b) if there is a path from a to b

{

Iterator<V> witer = g.iterator();

while (witer.hasNext())

{

Iterator<V> uiter = g.iterator();

V w = witer.next();

while (uiter.hasNext())

{

Iterator<V> viter = g.iterator();

V u = uiter.next();

while (viter.hasNext())

{

V v = viter.next();

if (g.containsEdge(u,w) && g.containsEdge(w,v))

{

Edge<V,E> leg1 = g.getEdge(u,w);

16.4 Examples: Common Graph Algorithms 429

Edge<V,E> leg2 = g.getEdge(w,v);

int leg1Dist = leg1.label();

int leg2Dist = leg2.label();

int newDist = leg1Dist+leg2Dist;

if (g.containsEdge(u,v))

{

Edge<V,E> across = g.getEdge(u,v);

int acrossDist = across.label();

if (newDist < acrossDist)

across.setLabel(newDist);

} else {

g.addEdge(u,v,newDist);

}

}

}

}

}

}

Clearly, edge labels could contain more information than just the path length.
For example, the path itself could be constructed, stored, and produced on re-
quest, if necessary. Again, the complexity of the algorithm is O(|V |3). This is
satisfactory for dense graphs, especially if they’re stored in adjacency matrices,
but for sparse graphs the checking of all possible edges seems excessive. Indeed,
other approaches can improve these bounds. We leave some of these for your
next course in algorithms!

16.4.5 Greedy Algorithms

We now consider two examples of greedy algorithms—algorithms that compute
optimal solutions to problems by acting in the optimal or “most greedy” manner
at each stage in the algorithm. Because both algorithms seek to find the best
choice for the next step in the solution process, both make use of a priority
queue.

Minimum Spanning Tree

The solution to many network problems involves identifying a minimum span-
ning tree of a graph. A minimum spanning tree of an edge-weighted graph is
a tree that connects every vertex of a component whose edges have minimum
total edge weight. Such a tree might represent the most inexpensive way to con-
nect several cities with telephone trunk lines. For this reason, we will interpret
the weights as edge lengths. For the purposes of our discussion, we will assume
that the graph under consideration is composed of a single component. (If the
graph contains multiple components, we can compute a minimum spanning
forest with multiple applications of the minimum spanning tree algorithm.)

430 Graphs

It is useful to note that if the vertices of a connected graph are partitioned
into any two sets, any minimum spanning tree contains a shortest edge that
connects nodes between the two sets. We will make use of this fact by segre-
gating visited nodes from unvisited nodes. The tree (which spans the visited
nodes and does so minimally) is grown by iteratively incorporating a shortest
edge that incorporates an unvisited node to the tree. The process stops when
|V | − 1 edges have been added to the tree.

MCST

static public void mcst(Graph<String,Integer> g)

// pre: g is a graph

// post: edges of minimum spanning tree of a component are visited

{

// keep edges ranked by length

PriorityQueue<ComparableEdge<String,Integer>> q =

new SkewHeap<ComparableEdge<String,Integer>>();

String v = null; // current vertex

Edge<String,Integer> e; // current edge

boolean searching; // looking for a nearby vertex

g.reset(); // clear visited flags

// select a node from the graph, if any

Iterator<String> vi = g.iterator();

if (!vi.hasNext()) return;

v = vi.next();

do

{

// visit the vertex and add all outgoing edges

g.visit(v);

Iterator<String> ai = g.neighbors(v);

while (ai.hasNext()) {

// turn it into outgoing edge

e = g.getEdge(v,ai.next());

// add the edge to the queue

q.add(new ComparableEdge<String,Integer>(e));

}

searching = true;

while (searching && !q.isEmpty())

{

// grab next shortest edge on tree fringe

e = q.remove();

// does this edge take us somewhere new?

v = e.there();

if (g.isVisited(v)) v = e.here();

if (!g.isVisited(v)) {

searching = false;

g.visitEdge(g.getEdge(e.here(),e.there()));

}

}

} while (!searching);

}

16.4 Examples: Common Graph Algorithms 431

Albany

Trenton

Montpelier

Dover

Boston

150

130

4200

120 250

100

Athens

4700

1500

Salt Lake City
Harrisburg

Phoenix

Sacramento

Bangkok

450
550

650 Kuala Lumpur

Connecting the world
All distances are approximate nautical miles.

Figure 16.8 The progress of a minimum spanning tree computation. Bold vertices
and edges are part of the tree. Harrisburg and Trenton, made adjacent by the graph’s
shortest edge, are visited first. At each stage, a shortest external edge adjacent to the
tree is incorporated.

First, we use a priority queue to rank edges based on length. As we re-
move the edges from the queue, the smallest edges are considered first (see
Figure 16.8). When an edge is considered that includes an unvisited vertex,
we visit it, logically adding it to the minimum spanning tree. We then add any
edges that are outward-bound from the newly visited node. At any time, the
priority queue contains only edges that mention at least one node of the tree.
If, of course, an edge is considered that mentions two previously visited nodes,
the edge is superfluous, as the nodes are already connected by a path in the tree
(albeit a potentially long one). When the priority queue “runs dry,” the tree is
fully computed. The result of the algorithm will be visited marks on all nodes
and edges that participate in the tree. (If the graph has multiple components,
some vertices will not have been visited.)

Our implementation begins by finding a source vertex (v) to “prime” the
greedy algorithm. The main loop of the algorithm then runs until no new ver-
tices can be added to the tree. Each new vertex is marked as visited and its
outbound edges2 are then added to the priority queue (q) of those to be con-
sidered. Short edges are removed from the queue until an unvisited vertex is
mentioned by a new tree edge (e), or the queue is emptied.

Over the course of the algorithm, consideration of each edge and vertex
results in a priority queue operation. The running time, then is O((|V | +

2 We use ComparableEdges here, an extension to an edge that assumes that the labels implement
Comparable.

432 Graphs

|E|) log (|V |)).
Notice that the first edge added may not be the graph’s shortest.

Single-Source Shortest Paths

The minimum spanning tree algorithm is related to a fast, single-source, shortest-
path algorithm attributed to Dijkstra. In this algorithm, we desire the minimum-
length paths from a single source to all other nodes. We expect the algorithm,
of course, to run considerably faster than the all-pairs version. This algorithm
also runs in time proportional to O((|V | + |E|) log (|V |)) due to the fact that it
uses much the same control as the minimum spanning tree. Here is the code:

Dijkstra

public static

Map<String,ComparableAssociation<Integer,Edge<String,Integer>>>

dijkstra(Graph<String,Integer> g, String start)

// pre: g is a graph; start is source vertex

// post: returns a dictionary of vertex-based results

// value is association (total-distance,prior-edge)

{

// keep a priority queue of distances from source

PriorityQueue<ComparableAssociation<Integer,Edge<String,Integer>>>

q = new SkewHeap<ComparableAssociation<Integer,

Edge<String,Integer>>>();

// results, sorted by vertex

Map<String,ComparableAssociation<Integer,Edge<String,Integer>>>

result = new Table<String,

ComparableAssociation<Integer,

Edge<String,Integer>>>();

String v = start; // last vertex added

// result is a (total-distance,previous-edge) pair

ComparableAssociation<Integer,Edge<String,Integer>> possible =

new ComparableAssociation<Integer,Edge<String,Integer>>(0,null);

// as long as we add a new vertex...

while (v != null)

{

if (!result.containsKey(v))

{

// visit node v - record incoming edge

result.put(v,possible);

// vDist is shortest distance to v

int vDist = possible.getKey();

// compute and consider distance to each neighbor

Iterator<String> ai = g.neighbors(v);

while (ai.hasNext())

{

// get edge to neighbor

Edge<String,Integer> e = g.getEdge(v,ai.next());

// construct (distance,edge) pair for possible result

16.4 Examples: Common Graph Algorithms 433

possible = new ComparableAssociation<Integer,

Edge<String,Integer>>(vDist+e.label(), e);

q.add(possible); // add to priority queue

}

}

// now, get closest (possibly unvisited) vertex

if (!q.isEmpty())

{

possible = q.remove();

// get destination vertex (take care w/undirected graphs)

v = possible.getValue().there();

if (result.containsKey(v))

v = possible.getValue().here();

} else {

// no new vertex (algorithm stops)

v = null;

}

}

return result;

}

Unlike the minimum cost spanning tree algorithm, we return a Table of
results. Each entry in the Table has a vertex label as a key. The value is an
association between the total distance from the source to the vertex, and (in the
nontrivial case) a reference to the last edge that supports the minimum-length
path.

We initially record trivial results for the source vertex (setting its distance
to zero) and place every outgoing edge in the priority queue (see Figure 16.9).
Unlike the minimum spanning tree algorithm, we rank the edges based on total
distance from the source. These edges describe how to extend, in a nearest-
first, greedy manner, the paths that pass from the source through visited nodes.
If, of course, an edge is dequeued that takes us to a vertex with previously
recorded results, it may be ignored: some other path from the source to the
vertex is shorter. If the vertex has not been visited, it is placed in the Table

with the distance from the source (as associated with the removed edge). New
outbound edges are then enqueued.

The tricky part is to rank the edges by the distance of the destination vertex
from the source. We can think of the algorithm as considering edges that fall
within a neighborhood of increasing radius from the source vertex. When the
boundary of the neighborhood includes a new vertex, its minimum distance
from the source has been determined.

Since every vertex is considered once and each edge possibly twice, the
worst-case performance is O(|V | + |E|), an improvement over the O(|V |3) per-
formance for sparse graphs.

434 Graphs

3

4
5

5 11

10

8
b

c

de
f

5 11

10
c

1111

10

3

4

4

3

a:0

3

4

(1)

(3) (4)

(2)

5

c

8

8 8

10

d

a:0 a:0

a:0

f:3

f:3 f:3

e:7

e:7e:7

b:8

b:8 b:8

c:18

5 5

5 5d:12 d:12

Figure 16.9 The progress of a single-source, shortest-path computation from source a.
As nodes are incorporated, a minimum distance is associated with the vertex. Compare
with Figure 16.8.

16.5 Conclusions

In this chapter we have investigated two traditional implementations of graphs.
The adjacency matrix stores information about each edge in a square matrix
while the adjacency list implementation keeps track of edges that leave each
vertex. The matrix implementation is ideal for dense graphs, where the number
of actual edges is high, while the list implementation is best for representing
sparse graphs.

Our approach to implementing graph structures is to use partial implemen-
tations, called abstract classes, and extend them until they are concrete, or com-
plete. Other methods are commonly used, but this has the merit that common
code can be shared among similar classes. Indeed, this inheritance is one of the
features commonly found in object-oriented languages.

This last section is, in effect, a stepping stone to an investigation of algo-
rithms. There are many approaches to answering graph-related questions, and
because of the dramatic differences in complexities in different implementa-
tions, the solutions are often affected by the underlying graph structure.

Finally, we note that many of the seemingly simple graph-related problems
cannot be efficiently solved with any reasonable representation of graphs. Those
problems are, themselves, a suitable topic for many future courses of study.

16.5 Conclusions 435

Self Check Problems

Solutions to these problems begin on page 450.
16.1 What is the difference between a graph and a tree?
16.2 What is the difference between an undirected graph and a directed
graph?
16.3 Under what conditions would you use an adjacency matrix over an
adjacency list implementation of a graph?
16.4 What do we know if the adjacency matrix is symmetric?
16.5 What is the time potentially required to add an edge to a graph repre-
sented as an adjacency list? What if the graph is represented using an adjacency
matrix?
16.6 What is a spanning tree of a graph?
16.7 What is a minimum spanning tree of a weighted graph?
16.8 What is the transitive closure of a graph?
16.9 What is the topological ordering of vertices of a graph?
16.10 Under what conditions is a topological sort of the vertices of a graph
possible?

Problems

Solutions to the odd-numbered problems begin on page 486.
16.1 Draw the adjacency matrix and list representations of the following
(undirected and complete) graph:

a b

cd

16.2 Draw the adjacency matrix and list representations of the following
(directed) graph:

a b

cd

16.3 Draw the adjacency matrix and list representations of a complete tree
with seven nodes and undirected edges.
16.4 What are the transitive closures of each of the following graphs?

436 Graphs

a b

d

e

a b

d

(a) (b)

e

c c

16.5 Suppose that we use an n × n boolean matrix to represent the edges
of a directed graph. Assume, as well, that the diagonal elements are all true.
How should we interpret the nth power of this adjacency matrix?

16.6 What topological characteristics distinguish a general graph from a gen-
eral tree?

16.7 Consider the following (simplified) map of the world:

Albany

Trenton

Montpelier

Dover

Boston

7500

150

130

4300

120 250

4200
100

200

Athens

4700

1500
Salt Lake City

Harrisburg

8000
7500Phoenix

Sacramento

Bangkok

450
550

650 Kuala Lumpur

Drive camels only on noncrossed edges.
All distances are approximate nautical miles.

Part of the world

a. Compute the shortest air distance to each of the cities from scenic Mont-
pelier, Vermont. Redraw the map with distances to cities and include only
the air routes that support the most direct travel to Vermont.

b. Suppose you’re interested in setting up a network among the capitals.
Redraw the map to depict the minimum spanning network.

c. Suppose you’re interested in setting up a Camel Express system. Redraw
the map to depict the minimum spanning road systems that don’t cross
bodies of water (indicated by crossed edges).

16.8 Explain why it is necessary that the Edge class “show through” the Graph
interface. (Hint: Consider implementations of the Iterator constructed by the
edges method.)

16.9 Compare and contrast the performance of the adjacency list and adja-
cency matrix implementations of graphs.

16.10 For both implementations of graphs, write a method, isSink, that re-
turns true if and only if the vertex indicated is a sink. (A sink has out-degree 0.)

16.5 Conclusions 437

16.11 For both implementations of graphs, write a method, isSource, that
returns true if and only if the vertex indicated is a source. (A source has in-
degree 0.)

16.12 In an undirected graph, it is possible for a single edge to be represented
by Edge objects whose vertices appear in opposite orders. Describe how a gen-
eral equals method for Edges might be written.

16.13 Explain why graphs with topologically sortable vertices must be (1)
directed and (2) acyclic.

16.14 Suppose we have a cycle-free graph that describes the dependencies Topological
sorting solves
this, given no
cycles.

between Java modules. How would you compute the order of compilations that
had to occur?

16.15 It is a fairly common practice to traverse the vertices and edges of a
graph. Consider a new implementation of graphs that keeps a Map of vertices
as well as an unordered List of edges. This makes traversal of edges simple.
What is the complexity of each of the other Graph operations?

16.16 Extend the all-pairs minimum distance algorithm to keep track of the
shortest path between the nodes.

16.17 Explain why it is sometimes more efficient to compute the distance
from a single source to all other nodes, even though a particular query may be
answered with a partial solution.

16.18 Under what conditions can a graph component have nonunique mini-
mum spanning trees?

16.19 Prove that a minimum spanning tree of a graph component must in-
clude a shortest edge.

16.20 It is possible, in Dijkstra’s algorithm, that an edge removed from the
priority queue is not useful: it takes us to a previously visited node. Some of
these extraneous edges can be avoided by not placing an edge in the priority
queue if the destination has already been visited. Is it still possible to encounter
an edge to a previously visited node?

16.6 Laboratory: Converting Between Units

Objective. To perform the transitive closure of a graph.

Discussion. An interesting utility available on UNIX systems is the units pro-
gram. With this program you can convert between one unit and another. For
example, if you were converting between feet and yards, you might have the
following interaction with the units program:

You have: yard

You want: inch

Multiply by 36.0

The program performs its calculations based on a database of values which has
entries that appear as follows:

1 yard 3 foot

1 foot 12 inch

1 meter 39.37 inch

Notice that there is no direct conversion between yards and inches.
In this lab you are to write a program that computes the relations between

units. When the program starts, it reads in a database of values that describe the
ratios between units. Each unit becomes a node of a graph, and the conversions
are directed edges between related units. Note that the edges of the graph must
be directed because the factor that converts inches to yards is the reciprocal of
the factor that converts yards to inches.

In order to deduce conversions between distantly related units, it will be
necessary for you to construct the closure of the graph. The labels associated
with adjacent edges are multiplied together to label the direct edge.

Once your program reads the unit conversion database, the program should
prompt for the source units and the destination units. It should then print out
the conversion factor used to multiply the source units by to get the destination
units. If the units do not appear to be related, you should print out a message
that indicates that fact. Prompting continues until the user enters a blank line
for the source units.

Thought Questions. Consider the following questions as you complete the lab:

1. There are two approaches to this problem: (1) construct the closure of the
graph, or (2) perform a search from the source unit node to the destina-
tion unit node. What are the trade-offs to the two approaches?

2. What does it mean if the graph is composed of several disconnected com-
ponents?

Notes:

